β-Amyloid (Aβ) peptides of 40 and 42 amino acids are major constituents of plaque and vessel amyloid in Alzheimer’s disease (AD). Most genetic mutations that cause early onset AD, including mutations in Aβ precursor protein (APP) and presenilins, appear to do so by increasing production of the longer Aβ peptide 1–42 (Aβ42) (Younkin 1995). These findings have led to intense research efforts to develop drugs that inhibit the production of Aβ peptides, in particular Aβ42 (Selkoe 1997). In principle, inhibition of Aβ42 production would prevent or delay the onset of AD.

Non-steroidal anti-inflammatory drugs (NSAIDs) are typically cyclooxygenase (COX) inhibitors and appear to prevent or delay the onset of AD (Rogers et al. 1996; Akiyama et al. 2000). It had been widely believed that NSAIDs main effect is protection against cell death which presumably would continue throughout disease progression and predict NSAID treatment efficacy. However, most anti-inflammatory clinical trials have been plagued by toxicity and efficacy issues. However, NSAIDs also appear to protect against amyloid pathology which is more specific to AD and precedes cell death. Further, at least some NSAIDs can limit the progression of Aβ plaque pathology in APP transgenic mouse models (Lim et al. 2000; Jantzen et al. 2002) and a subset of NSAIDs at high doses can selectively inhibit the production of Aβ42 (Weggen et al. 2001). A major concern with widespread use of NSAIDs at high doses for AD prevention is the potential NSAID toxicity associated with COX inhibition, most frequently gastric ulceration, but also liver and kidney damage. All NSAIDs reported to reduce Aβ42 (Weggen et al. 2001) also markedly inhibit COX activity at much lower doses and are therefore likely to have toxicity problems, particularly with chronic use in the elderly. NSAIDs are administered as a racemic R- and S-mix of enantiomers and the COX-inhibitory activity of common NSAIDs in the 2-arylpipionic or profen family (ibuprofen, ketoprofen, flurbiprofen, etc.) is caused by the S-enantiomers (Jerussi et al. 1998). In contrast, R-enantiomers are supposed to be inactive isomers. The reduction of Aβ42 by a subset of NSAIDs racemates was shown to be independent of COX inhibition (Weggen et al. 2001). Therefore, the so-called inactive R-enantiomer might still be able to reduce Aβ42 production.

In this study, two supposedly inactive R-enantiomers were tested and found to reduce Aβ42 production. High doses of ibuprofen and both S- and R-enantiomers inhibit NF-κB (Scheuren et al. 1998; Tegeder et al. 2001a) and NF-κB has been reported to specifically induce Aβ42 production (Tomita et al. 2000). Therefore, we tested the ability of an NF-κB peptide inhibitor to inhibit Aβ42 production. We report that R-flurbiprofen, an NSAID with a favorable toxicity profile at high doses in humans can selectively reduce Aβ42 production, but more specific NF-κB inhibition leaves Aβ42 production unchanged. Part of this work has been in abstract form (Morihara et al. 2002).

Materials and methods

Materials

R- and S-ibuprofen was from Sigma (St Louis, MO, USA). R-ibuprofen and R-flurbiprofen were the generous gift of Dr Peter Andersch (PAZ Pharma, Germany). A 1000 × stock solution in ethanol (EtOH) was prepared. Cell-permeable NF-κB inhibitory peptide SN50 and its inactive control peptide, SN50M, were purchased from Biomol (Plymouth Meeting, PA, USA).

Cell culture

Human embryonic kidney (HEK293) cells stably transfected with human ‘Swedish’ mutant APP (HEK293 APPSw3, the generous gift of Dr S. Sisodia, University of Chicago, Chicago, IL, USA) were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 μg/mL streptomycin and 100 U/mL penicillin (Invitrogen). The cells were seeded at a density of 2 × 10⁵ cells per well in 24-well plates in serum-free DMEM and were allowed to grow for 2 d before treatment with stock solutions of ibuprofen (100 μM), flurbiprofen (100 μM), and ibuprofen racemate (100 μM) in the presence or absence of the NF-κB inhibitor SN50 (100 μM). The cells were harvested 24 h after treatment and analyzed by Western blot analysis.

Received August 12, 2002; accepted August 21, 2002.

Address correspondence and reprint requests to Greg M. Cole, Greater Los Angeles VA Healthcare System, GRECC, Sepulveda, CA 91343, USA. E-mail: gmcole@ucla.edu

Abbreviations used: Aβ, amyloid β protein; AD, Alzheimer’s disease; COX, cyclooxygenase; NF-κB, nuclear factor κB; NSAIDs, non-steroidal anti-inflammatory drugs.
Dulbecco’s modified essential medium (DMEM) supplemented with 10% fetal bovine serum, 1 mM Na pyruvate, 2 mM GlutaMax-1 (Gibco-BRL, Grand Island, NY, USA), 16 mM HEPES pH 7.4, penicillin 100 U, streptomycin 100 μg/mL, and 200 μg/mL G418. Serum containing media was withdrawn from semiconfluent cultures and drugs added at the indicated doses in serum-free media with 0.1% EtOH. After 18 h, media were harvested, aliquoted, and assayed for LDH and Aβ by sandwich enzyme-linked immunosorbent assay (ELISA).

Sandwich ELISAs for Aβ
ELISA kits for Aβ40 and Aβ42 were purchased from Biosource International (Camarillo, CA, USA) and performed as per manufacturer’s instructions. Our sandwich ELISA for total Aβ has been previously described (Lim et al. 2000). Briefly, the assay uses monoclonal 4G8 against Aβ17–24 (Senentek, Napa, CA, USA) as the capture antibody, and a reporter system using streptavidin–alkaline phosphatase and AttoPhos (IBL Scientific Inc, San Luis Obispo, CA, USA) as the substrate (excitation 450 nm/emission 580 nm). All ELISAs were carried out in duplicate.

Immunoblots for APP
Levels of full-length APP (rabbit polyclonal 681–695, Kang sequence) in cell lysates and secreted APP in media (22C11, Chemicon, Temecula, CA, USA) were determined on immunoblots. Blots were performed as previously described (Lim et al. 2001). The comparisons were done in triplicate, scanned with exposure in a linear range and the signal strength (relative optical density, OD) analyzed.

Results
Aβ42 was readily detectable in the 18 h conditioned media from HEK293Sw3 cells. The percentage of Aβ42 compared with vehicle control was effectively reduced by racemic ibuprofen (ibuprofen) at clinically achievable plasma levels, where side-effects frequently emerge particularly in the elderly population (50–250 μM; Fig. 1a). Inhibition of the percentage of Aβ42 was also obtained with R-ibuprofen with these doses (Fig. 1b). R-flurbiprofen had a larger effect, reducing Aβ42 by nearly 40% \((p = 0.003) \) at 250 μM (Fig. 1c). In independent experiments, we confirmed that Aβ42/total Aβ ratios were similarly reduced by R-flurbiprofen and ibuprofen (not shown).

The results showing that the weak-COX inhibiting R-enantiomers of both ibuprofen and flurbiprofen also result in similar reductions in Aβ42 is consistent with Weggen et al.’s (2001, 2002) evidence that the Aβ42 reduction is COX-independent. One known COX-independent activity of both R-ibuprofen and R-flurbiprofen in the same range of Aβ42 reduction dosage is NF-κB inhibition (Scheuren et al. 1998; Tegeder et al. 2001a) and NF-κB has been reported to selectively induce Aβ42 production (Tomita et al. 2000). Therefore, we tested the Aβ42 lowering activity of a specific NF-κB inhibitor (SN-50) at doses which effectively inhibit translocation of the NF-κB active complex into the nucleus (Lin et al. 1995). Compared with the manufacturer’s control peptide (SN-50M; Fig. 1d) or no drug control (not shown), SN-50 failed to decrease or even increased Aβ42 production. Given that 50 μg/mL SN-50 is able to inhibit NF-κB by 88% (Lin et al. 1995), these results with 50 μg/mL and even higher doses argue that NF-κB inhibition was not responsible for R-profen action in lowering Aβ42 production.

Another possible mechanism for profen activity lowering Aβ42 production could be a reduction in total APP production or APP secretion. However, at doses inhibiting Aβ42, there was also no drug effect on the levels of full-length APP protein in cell lysates assayed by western analysis (Fig. 2a) or on APPs in the media (Fig. 2b). This result is consistent with the lack of cell loss or inhibition of APP production and maturation, but consistent with an effect on APP processing to Aβ.

As shown in Fig. 3, R-flurbiprofen significantly reduced Aβ42, but not Aβ40 at 100 and 250 μM \((p < 0.001) \). The selective reduction in 42, but not 40 resulted in significant decreases in the Aβ42/Aβ40 ratios expressed as percent of control (vehicle-treated) levels \((p < 0.05) \). No evidence of toxicity in lactate dehydrogenase (LDH) assays was evident with doses of R-flurbiprofen of 250 μM and below, but toxicity was observed with 150 μg/mL SN-50 (not shown). Along with the evidence that media levels of APPs and Aβ40 are unchanged, our data indicate a selective R-flurbiprofen effect on Aβ42 production.

Discussion
Unfortunately, inhibition of the Aβ-generating γ-secretase and genetic knockout for the secretase-related presenilin proteins result in not only
inhibition of both Aβ40 and Aβ42, but compromised Notch activity and immune function (De Strooper et al. 1999). In this study, supposedly inactive and safe R-enantiomers successfully reduced Aβ42 (Figs 1 and 3). Though both R and S-flurbiprofen can inhibit the NF-κB pathway at high doses and induction of the NF-κB pathway has been reported to selectively increase Aβ42 production, NF-κB inhibitor Snj-50 did not reduce Aβ42 (Fig. 1). During the submission of this report, Koo’s group presented additional evidence against involvement of NF-κB pathway in the reduction of Aβ42 by NSAIDs using p65/RelA knockout fibroblasts (Weggen et al. 2002). Though the mechanism of Aβ42 reduction is still unknown, the shared action of R and S NSAIDs is a clue toward its elucidation.

Most NSAIDs have optimized IC50 for COX inhibition in the nanomolar or low micromolar range. Their ability to lower Aβ42 production occurs at doses at least an order of magnitude higher than COX inhibition. For example, ibuprofen’s IC50 for COX-1 is 2.1 μM (Neupert et al. 1997; see for review Tegeder et al. 2001b), well below dosing for Aβ42 reduction. This implies toxicity from near complete COX inhibition will sharply curtail their use for Aβ42 reduction. In contrast, R-flurbiprofen has similar Aβ42 lowering activity to S-flurbiprofen, but much less potent COX inhibitory activity. (see for review Tegeder et al. 2001b) Because HEK293 cells produce very low prostaglandin E2 and have negligible activity of the enzymes involved in this cascade (Ueno et al. 2001), the prostaglandin E2 levels in our HEK293 cell culture were undetectable, although readily measured in CHO cells (data not shown). While we could not confirm the absence of COX inhibition by R-flurbiprofen in HEK293 cells, previous reports show the IC50 for human COX-1 and COX-2 by R-flurbiprofen are more than 40 μM and 100 μM, while those of S-flurbiprofen are 0.03 μM and 0.9 μM, respectively (Geisslinger et al. 2000; see for review Tegeder et al. 2001b).

Unlike other R-enantiomers of profens which are rapidly inverted into their potent COX-inhibiting S-forms, R-flurbiprofen is very poorly bio-inverted and therefore has only weak in vivo COX-inhibitory activity (Geisslinger and Schaible 1996). The absence of enantiomer inversion has allowed a clinical trial with chronic doses of R-flurbiprofen resulting in sustained plasma levels of R-flurbiprofen well above levels required for significant Aβ42 inhibition in the absence of drug-related toxicity (Keegan and Loughman 2001). Because R-flurbiprofen readily enters the CNS (Geisslinger et al. 2000), it should also limit Aβ42 production in human CNS. Although low doses of R-flurbiprofen have been safely used in patients as half of flurbiprofen racemate for many years, whether chronic high dose R-flurbiprofen results in significant toxicity in AD patients can only be resolved by clinical trials.

We are currently carrying out chronic in vivo studies in APPsw transgenic animals to determine the impact of R-flurbiprofen on plaque pathogenesis. The probability of success is increased by a recent report showing plaque reduction in a transgenic model with chronic nitro-flurbiprofen, a drug that breaks down to produce both R- and S-flurbiprofen (Jantzen et al. 2002).

Acknowledgements

This work was supported by NIA-AG13471 (GMC), VA Merit, the Alzheimer Association and The Elizabeth and Thomas Plott Family Foundation. The authors would like to thank Dr S. Sisodia, U Chicago for HEK293Sw3 cells.

Note added in proof

Dr Tod Goldie’s group has also presented data demonstrating the reduction of Aβ42 by R-flurbiprofen at the 8th International Conference on Alzheimer’s Disease and Related Disorders (Stockholm, July 20–25, 2002, Abstract 373).

References

